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SIMULATION OF SOME AUTOREGRESSIVE MARKOVIAN SEQUENCES

OF POSITIVE RANDOM VARIABLES

by

A. J. Lawrance

and

P. A. W. Lewis

ABSTRACT

Methods for simulating dependent sequences of continuous

positive-valued random variables with exponential, Gamma, mixed

exponential and uniform marginal distributions are given. In

most cases the sequences are first-order, linear autoregressive,

Markovian processes. A two-parameter family of this type

with exponential marginals is defined and its transformation

to a similar multiplicative process with uniform marginals

is given. It is shown that for a subclass of this two-

parameter family extension to mixed exponential marginals is

possible, giving a model of broad applicability for analyzing

data and modelling stochastic systems. Efficient simulation

of some of these schemes is discussed.
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1. INTRODUCTION

In a recent series of papers [1,2,3,4,5,6,7,8] some

simple models have been derived for stationary dependent

sequences of positive, continuous random variables with given

first-order marginal distributions. In general the dependency

structure, as measured by second-order joint moments (serial

correlations) mimics that of the usual linear mixed auto-

regressive-moving average (ARMA) models which have been used

for so long in time-series analysis. In the ARMA models,

which are defined quite generally, there is in usage an

implicit assumption of marginal normality of the random vari-

ables. This is clearly not the case if the random variables

are positive, say the times between events in a series of

events [91 or the successive response times at a computer

terminal. Thus the new models are derived to accommodate

situations in which the dependent random variables have, for

instance, exponential, Gamma, Laplace and mixed exponential

marginal distributions. The exponential case is the most

highly developed, with the nomenclature [4] EARMA(p,q)

(exponential process with mixed moving average-autoregressive

structures of orders p and q respectively) and NEARMA(p,q)

(new EARMA(p,q)).
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The development of the probabilistic properties of

these processes is given in the referenced papers, applications

to queueing models and computer system modelling in [10,111

while development of estimation and testing procedures has

just begun.

The object of the present paper is to define and

discuss the simulation of the processes on digital computers,

though for the sake of brevity only the first-order Markovian,

autoregressive case is considered. The simplicity of structure

of these models--in general they are linear additive mixtures

of random variables--makes them ideal for this purpose. How-

ever stationarity conditions are sometimes difficult to derive

analytically and in some cases it is not simple to generate

the innovation random variables in the processes. A striking

example of this is the case of the Gamma first-order autore-

gressive process for which an efficient means of simulation

has only recently been found [71 for some parametric values.

It is shown that a simple transformation of the exponential

sequences gives a direct multiplicative method for generating

dependent processes with uniform marginals. These could be

the basis in simulations for many other types of dependent

sequences.
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2. EXPONENTIAL AUTOREGRESSIVE MARKOVIAN SEQUENCES

We give here three methods of generating first-order

autoregressive, Markovian sequences with exponential marginal

distributions. The first two are defective in terms of their

sample path properties (the first more so than the second)

while the third, NEAR(l), is satisfactory in this respect.

The defect of the first two models is also highlighted by

the simulation procedures used; they can be generated from

one sequence of exponential variables.

Note that autoregression in the context of a stochastic

sequence {X is vaguely used. In the first place linear,n

additive autoregression is usually implied. In the second

place autoregression can mean that in the defining equation

for Xn  the previous value enters explicitly, but more

particularly it means that the conditional expectation of

Xn , given Xnl = xnl , is an additive linear function of

E(Xn Xn_ 1 = xn_ I ) = a + bxn_)

The Markovian property (first-order) means that the probability

structure of Xn, Xn+l,..., given Xn 1 = xn  is independent

of Xn 2I Xn 3I*-

3



2A. The Exponential DAR(I) Process

A very simple exponential autoregressive Markovian

sequence is generated by the equation

Xn= VnXn- + (1 - Vn)En (2)

where P{Vn-11 = 1 - P{Vn=01 = p and En , n = 1,2,... are

independent exponential random variables with parameter A;

P{E n < x}1 - - Ax  x>0-{ <x le~ , x>0, > 0

(3)

=0 , x< 0.

For this process the serial correlations Pk = corr(Xn Xn+k)

are

Pk = Pk (4)

and

E(XnlXnI = Xni) = PlXn-1 + (1 - Pl)/X. (5)

This process is an exponential version of the DAR(l) process

[12,131 but is rather useless for modelling real data because

simulations of the process show runs of Xn's with the same

value. These occur when Xn_1  is picked successively in (2),

4



rather than the innovation En . Moieover the lengths of then

runs of similar values are geometrically distributed.

2B. The Exponential EAR(l) Process

Another model is derived from the usual linear model

Xn = PXn-_ + En (6)

in which the i.i.d. innovation process en I is chosen so

that the Xn's are marginally exponential(M). Gaver and

Lewis [11 show that for this to be true, one must have

0 < p < 1 and

6n = En  w.p. 1-P,

= 0 w.p. P , (7)

where {E n, as throughout the paper, are i.i.d. exponential(A).

n
Again Pk = p and E(Xnl n-i = Xn_ 1 ) = PlXnl + (1-p 1 ) ,

as at (4) and (5) for the exponential DAR() model. The

difference is in the sample paths; for the EAR(l) process

simulations show runs of Xn's decreasing geometrically.

These occur when only pXn_ 1  is picked in (6). Again the

lengths of these runs are geometrically distributed.
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The Markov property of the two sequences implies

that if X0 is chosen to be E0 , an exponential(X) random

variable independent of E1, E2, ... , then X1, X2 ,...

forms a stationary sequence.

Naive inspection of the defining equations (2), (6)

and (7) suggest that to generate a stationary sequence of

length N, X1, ..., XN , (N+l) i.i.d. exponential deviates

and N uniform variates (for the selection process) are

needed. However, the sequences can be generated from only

one exponential sequence; this is possibly related to the

degeneracy in the processes. This method uses the memoryless

property of exponential(X) variables, namely that if En

is given to be greater than a constant y, then En - Y

is again exponential(X).

Thus the algorithm is to initialize by setting

X0 = E0 ; subsequently set Xn = PXnl if En <x=-In(l-p)/X;

otherwise set Xn = PXn 1 + (En - xp). This uses the fact

that, from (3), P{E n < xp} = p.

Even greater efficiency can be obtained, though this

must be qualified by considerations as to whether the Xn's

are to be generated one at a time or in an array; whether

a subroutine is available to generate exponential random

variables faster than can be done by taking logarithms of

uniform deviates, and the relative speed of division and

generation of uniform deviates.
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The more efficient scheme recycles uniform variables,

i.e. if U is given to be between constants a and b,

where 0 < a < b < 1, then (U-a)/(b-a) is a uniform

random variable. (Note that its value is not given, only

that it is in (a,b).) Thus to generate an array

Xl,..., XN , of dependent exponential variates with mean 1

from the EAR(l) process we have

Algorithm 1 (EAR(I) process)

1. Generate U and set X0 - -in U

2. Generate U and set Y 4- U

3. n4l

4. If Y < p go to 7

5. Xn + pXn_ 1 - kn(Y-p) + kn(l-p)

6. Generate U, set Y - U and go to 8

7. x n 4 PXnI Y 4- Y/P

8. Set n * n+1

9. If n < N go to 4

10. Otherwise exit.

The expected number of uniform deviates required in this

algorithm is I + (l-p)N, which is less than the number N

required to generate an i.i.d. exponentialA) sequence.

7



2C. The Exponential YEAR (1) Process

A broader two-parameter exponential sequence which

is a first-order autoregressive, Markovian process and an

additive linear mixture of random variables is given by

Lawrance [71 and developed by Lawrance and Lewis [5]. Called

NEAR(l), the sequence is defined as

Xn_ 1  w.p. a

Xn = En + n = 1,2,... , (8)
10 w.'p. 1-a

where 0 < a < 1 and 0 < $ < 1. It can be shown that for

the Xn to be marginally exponential(X) the innovation

variable en must be generated from an En by the exponential

mixture

E 1-i8
n w.p. i(I-M)

en = n = 1,2,... (9)

(1-a) OEn w.p. asI )

providing a and 8 are not both equal to one. When a = 0

or 8 = 0 the {Xn I are exponential i.i.d., whereas when

a - 1 the EAR(l) model given at (6) and (7) is obtained. In

fact fixing either a or 8 and varying the other parameter

gives an exponential model with a full positive range of

serial correlation of order one, since it is easily shown

that

8



k (a8)k (10)

Again

E(XnXn_ 1 = Xn 1 ) = aXon_1 + (1-a8)/A

= PlXn_ 1 + (l-pl)/X (11)

and X0 = E0 gives a stationary sequence. The NEAR(l) pro-

cess allows one to model a broader class of exponential

sequence as measured either by sample path behavior or higher-

order joint moments; see (5) for details.

A particularly simple case occurs when 8 = 1; this

model, called TEAR(l), is very tractable analytically and,

as will be shown below, extends easily to the case of mixed

exponential distributions for the Xn.

Note that in the NEAR(l) process the innovation n

is always present unless a = 1 and it is therefore not

possible to simulate the stationary process with less than

N+l uniform variates. The simplest method to generate

dependent exponential variates with mean 1 from the N-EAR(l)

process seems to be the following:

Algorithm 2 (NEAR(l) process)

1. Generate U; set X-0 -tn U; Y 4- 1-a;

4 - (1-0)/[l- (1-a)8].

2. Generate U; set n i.

3. If U < Y set Y 4- U/y and go to 7.

9



4. Otherwise Y 4- (U - y) - y)

5. If Y < set Xn  - in Y+ in 6 and go to 9.

6. Otherwise set Xn -4- 0n[(Y-S)/(1-6)] and

go to 9.

7. If Y < 6 set Xn - -n Y + in 6 and go to 9.

8. Otherwise set 4- -yO in[(Y-6)/(l-6)].

9. Set n *- n+l.

10. If n < N generate U and go to 3. Otherwise exit.

Note that for stationary array of N Xn 's, exactly

N+1 uniforms are required and therefore it could be advantageous

to generate these in an array which would be replaced one at

a time by the Xn's. Care must be taken with the recycling

of the uniform variates U if y = 1-a is close to one or

zero. In that case it is probbbly better for computational

reasons to use 2(N+l) uniform variates. Note that y = 1

gives the EAR(l) process.

3. UNIFORM MARKOVIAN SEQUENCES

It is convenient to have dependent sequences of random

variables with marginal distributions other than exponential.

Before discussing other solutions to the Equation (8) we

show that a simple transformation of the NEAR(l) process gives

a two-parameter family of Markovian random variables with

10



uniform marginal distributions. It is well-known that an

exponential transformation of a unit exponential random vari-

able gives a uniformly distributed random variable. Thus we

have from (8) and (9) the multiplicative model for a uniform

Markovian sequence {Xn}, n = 1,2,... ;

Xn C n-l a

ICn w.p. (1-a) (12)
~n = 1,2,...,

where

En = Un 1-
l-l8 (13)

= Un(l-a) 8 w.p.l--)
=-la 8~-)WP (14)

n = 1,2,...

for Un, n = 1,2,..., i.i.d. uniformly distributed, providing

that a and 8 are not both equal to one. Again if X0

is uniformly distributed and independent of U1, U2 , ... the

sequence is stationary.

An algorithm for generating this two-parameter uniform

sequence is easily adapted from Algorithm 2. It remains to

find the correlation structure and the regression of Xn

on Xnl.

To do the former, let ) be a NEAR(l) sequence with

- 1, so that the sequence Xn at (12) is given by

11



- ek,{~*}.Now the joint Lapiace-Stieitjes transform of
3q, lq~ is given by Lawrance, and Lewis [51 as

-E~exp[-sX-Xn tNi-01 (15)

Ock 11 (0 Is) OX*(0 k s + t) + -i(1-a)ta OC *(a B)OX*(t)
i=O j=O =

where Ye s) and OX*(s) are respectively Laplace-Stieltjes

transforms of c defined at (9) and the exponential variable

X*. Setting s = t = 1 in (15) gives

(l~) =Elexp(-X*) exp(-X*- )lMFCy~ = nk n-

= E(X X~- (16)

Then using the fact that for a uniform random variable

EMX 1/2 and var(X) =1/12, we have from (15) and (16),

after simplification

-k corr (Xn IXn-k) - aa
2 + 8 i-lu1 + (1-000

k l 12,... .(17)

12



Note that this is not simply a geometrically decaying corre-

lation sequence, as for the NEAR(l) process. However, for the

important special case when 8 = 1 we get

j k

k T7)kk l,2,..* , (18)

and thus the serial correlations Pk are the kth power of

_= 'which takes on any value between 0 and 1. Thus we have

a particularly simple uniform Markovian sequence.

A similar analysis given in Lawrance and Lewis [5

shows that

E(XnlXnl=U) 1 1 + 8 o - a+ } (19)S{Xn~n_ 1 = f I (I T (1-330

so that the regression is not linear.

This uniform sequence could form the basis, via a

probability integral transform, of many other sequences with

given marginals. However, marginal transformations do not

preserve correlation structure, as shown at (17), and it is

therefore useful to see whether sequences with marginals

other than exponential can be generated from (8) for special

cases with a suitable choice of innovation sequence Ene This

will result in a simple process with autoregressive Markovian

structure.

13



4. ARKOVIAN SEQUENCES WITH SOME OTHER MARGINALS

Although an exponential distribution is a common assump-

tion for positive random variables met with in problems in

operations research, it is too narrow an assumption to encompass

real situations. Therefore parametric distribution models are

invoed which include the exponential as a special case and

which allow for the modelling of data which has greater or lesser

dispersion than exponentially distributed data. Two commonly

used models are

i) the Ganma(k,X) distribution whose probability density

function is

) x) k-l - X
f(x= () , k > 0; X > 0; x > 0, (20)

where r(k) is the complete gamma function, and

(ii) the (convex) mixture of exponential random variables

f(x) = ill A 1 e + (1-T 1 )e 2

0 < X1 < X,2; x > 0, 0 ( <-..1 . (21)

The Gamma distribution has dispersion, measured by the coef-

ficient of variation C(X) = (X/E(X)), which is greater than

the exponential value of 1 if k < 0 and less than 1 if k > 1.

The mixed exponential always has C(X) > 1, the equality

occurring when the special case of an exponential random vari-

able with parameters A1 or A2 holds.

14
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4A. The Gamma G&R(1) process

Direct solution of equation (6) using Laplace-Stieltjes

transforms gives [I] that, in the stationary sequence, for the

Xn to be Gamma(k,A) we must have

eCls) = E(e-Sl = + 11-1 j) (22)

For k integer this has an explicit inverse. For example,
2

for k = 2 the innovation e is zero with probability p ,

is exponential(X) with probability 2p(l-p) and is Gamma(2,A)

2with probability (l-p) It is easy to show in general that e

is zero with probability pk, so that the "zero defect" is not

serious for large k. A method of simulating a random variable

whose Laplace-Stieltjes transform is equation (22) was derived

by Lawrance [71, using the fact that this sequence arises in

a particular type of shot noise process. Thus we have the

Gamma Innovation Theorem

Let N be a Poisson random variable with parameter

e = -k tn(p). Let U1, U2,... , UN be uniformly distributed

over (0,1) and independent. Let Y'1 '""'* YN be exponential(k)

and independent. Then c can be simulated using

N U

M Y m  if N > 0,

=0 if N =0 ( (23)

15
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A proof is not given here. Note that e is zero with prob-

kability exp{-k In(p) = p. Also the Poisson number N

of uniform and exponential random variables which must be

generated for each e has expected value e = -k kn(p).
This will be prohibitively large, and the simulation will be

very inefficient, if k is large and/or p is close to zero.

Neither of these cases is serious, however. If k is large,

say greater than 50, the sequence is almost normal and the

usual normally distributed, AR(l) linear process can be used.

If p is as small as 0.001 then E(N) is still only

k x (6.9078) which is still reasonable. However, for p

this small the sequence is approximately i.i.d. Gamma and

acceptance-rejection techniques for simulating Gamma variables

are known.

It is quite simple to adapt Algorithm 1 to the GAR(l)

case. It would pay to have a built-in routine for generating

the Poisson variable which will bypass further calculations

if N = 0. In other words routines for generating Poisson

variates which start by searching at the median of a table

of cumulative Poisson probabilities will be inefficient.

Unfortunately the NEAR(l) process does not appear to

extend to the Gamma case; it can be shown explicitly that

there is no innovation £n in equations (8) and (9) which

will make X. have a Gamma distribution with k = 2.

16



4B. Mixed Exponential Markovian Process

Fortunately first-order autoregressive Markovian

processes with mixed exponential marginal distributions can

be obtained from equations (8) and (9) in two special cases,

and these sequences should be widely useful in modelling

stochastic systems.

(i) The case a = 1; MEAR(1).

In (1) it is shown that the solution to the Laplace

transform of n for the linear model (6) is a constant pn

plus a (generally) non-convex mixture of three exponential

functions. This can be shown to be a proper density function

if p < A1 /A 2 , but it can also be shown that it is not a

density function for all p less than one and greater than

or equal to zero. However, Lawrance [61 showed that unless

X1  is much smaller than X2 (and thus the are very

over-dispersed relative to an exponential random variable)

a solution exists for En for all p. Thus we have a use-

ful process, although again the zero-defect of order p is a

problem.

(ii) The case 8 = 1; MEAR(l).

When a = 1 in equation (8), a mixed exponential process

TMEAR(1) is obtained which is extremely simple to simulate

since the innovation c n is just the mixture of two exponentials

for all 0 < p < 1. Moreover, the process has no zero-defect.

17



As discussed above, the sample paths will tend to "run up,"

but this is no great problem unless p is fairly large.

Thus we have the following Theorem which we state without

proof:

TMEAR (1) Theorem

Let the first-order autoregressive, Markovian sequence

{Xn} be defined by

n  + , n 1,2,3,...

where P{Vn=l}= 1 - P{Vn=O}= for 0< a < 1. Then the

sequence {Xn } is stationary and has a (convex) mixed exponential

marginal distribution with probability density function

f x) = 7r,1X1e + (1-7r)e 2

0 < A 1 < A2; 0 < l < 1; x > 0, (24)

if en  is i.i.d. and has a mixed exponential distribution given

by

-Y1 x -72xf(x) r 1 y1e + n2y2e x

7l > Y2 > 0; n, 1 0; n2 --1-nl (25)

where

18



/

1/ ( i Yly Y2)

21/

={b + (b2  4ac)l/ 2}/2a

a (1-a)pl12

11 V 2 U2 + ' 1 y1 = E(X)

b = 2 + -

V 2 + 1- P ;  = 1/''1; V2 = 1/Y2

and X0  is independent of l' F2, ..' and has probability

density function (24).

Note that the special cases where n1 = 0 or = 1

give NEARl) exponential processes with parameters X2  and

X I respectively. Thus they should be handled by Algorithm 2

since they will cause computational problems. The case

X1 = X2 also gives a NEAR(l) process and is excluded for

similar reasons.

Another computational problem arises from the fact

that the probability density function (25) for c is not a

convex mixture if, as is possible, nl is greater than one.

Of course, if n1 < 1 then c is generated as an exponen-

tial(y 1 ) random variable with probability n1  and as an

exponential(y2 ) with probability (1-nl). In the other case

we use the following theorem (see e.g. (1)):

19



Simulation of Nonconvex Mixed Exponential

Let 6 = nl(l-Y2 /Yl). Then with probability 1-6

the innovation E is an exponential(y1 ) random variable

and with probability 6 the innovation E is the sum of

an exponential(y) random variable and an exponential(Y2)

random variable.

It would be useful to have a mixed exponential solu-

tion for the sequence (8) for all a for convex mixed

exponential marginal distributions, but this seems difficult

to prove because of the algebra involved.

5. GENERALIZATIONS

In all of the processes discussed here the correla-

tions are non-negative and geometrically decreasing. A scheme

for obtaining alternating correlations which are possibly

negative is given in [1] and (5]. Another problem is that

different types of dependence and higher-order Markovian

dependence might be encountered in data. Schemes for obtain-

ing mixed autoregressive moving average exponential sequences

where the autoregression has order p and the moving average

has order q are given in (4). The mixed exponential process

TMEAR(l) is easily extended to give a process with this type

of extended correlation structure. This will be discussed

elsewhere.
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